Peritoneal Dialysis Adequacy

Suzanne Watnick, MD
Associate Professor of Medicine
Training Program Director
Oregon Health & Science University
Outline of Talk

⇒ What is Adequacy (Definition)?
⇒ What do the current guidelines say?
⇒ What basic literature is important?
⇒ How do we practically assess adequacy?
Case to illustrate the issues...

- Mr H is a 37 yo caucasian gentleman, ESRD x 4 years due to T1 DM since age 2
 - He chose PD because he still works full time
 - Gastroparesis is his biggest complaint
 - He stopped his midday exchange x 1 mo
 - Insists he feels better: nausea, better appetite
 - Regimen: 4 x 2.0L nighttime exchanges of 1.5% Dianeal; final fill and midday exchange 1.5L of 2.5% Dianeal
Case continues

• The renal fellow gets all the appropriate information, and tells Mr H that he should not have stopped his daytime exchange.
• Is the fellow correct?
• Is Mr H receiving adequate dialysis?
• What is adequacy?
What is Adequacy?

Active learning exercise:

– How would you define adequacy in terms of replacing renal function?

In nephrology, adequacy first used to describe an appropriate dose of hemodialysis (HD)*

– Adequacy for peritoneal dialysis adopted later

– Conceptual overall goal equivalent to HD, calculations not equivalent**
Adequacy Algorithm

- Input patient's subjective well-being
- Input objective measures of renal replacement therapy and daily living

- Are goals being achieved
 - Yes: Continue what you are doing
 - No: Change something
What contributes to Adequacy?

Broad sense
Control of:
- Acid-base status
- BP and volume status
- Cardiovascular Risk
- Diet/nutrition
- Mineral/Bone disorders
- Small/middle molecules

Possibly most important:
How the patient feels!
What contributes to Adequacy?

Narrow Sense:

- Appropriate small molecular weight solute clearance
- Specifically measured as urea clearance

- In PD, you measure $Kt/V_{\text{total}} = \text{Renal } Kt/V + \text{Dialysate } Kt/V$
- Renal \neq Dialysate Kt/V but this is how it is practically calculated
Adequacy: Guidelines

KDOQI Guidelines

Minimal ‘delivered’ dose

- Total Kt/V_{urea} AT LEAST 1.7 per week.
- sum of peritoneal and renal urea clearance
- Caveat: If urine output > 100cc/day, collection should be performed.
Adequacy: Guidelines

ISPD Recommendations

- Adequacy should be interpreted clinically rather than via solute and fluid removal.
- For small solute removal, total (renal + peritoneal) Kt/V_{urea} not less than 1.7 at any time.
- If pt relies on residual renal function to achieve adequacy, monitor q1-2mo if able, but no less than q4-6 mo.
Show me the data

CANUSA Trial

– Led to prior guidelines of Kt/V_{urea} 2.0 target for CAPD, higher targets for CCPD and NIPD, without data, but from theoretic considerations
– Prospective observational cohort, 680 pts
– Looked at relationship of dialysis adequacy and nutritional status to mortality, morbidity, and technique failure
– Decr 0.1 of Kt/V_{urea} resulted in increased risk of death of 5%
CANUSA continued

• Findings based on assumption that
 – 1 unit of renal clearance = 1 unit of dialysis clearance

• Reanalysis showed survival related to:
 – residual renal function
 • Declined over time
 – Not dialysis clearance
 • Usually stable over time
Show me more data

- Prior Kt/V_{urea} goal (guidelines): 2.0
- Some patients looked clinically fine, but did not achieve goal
 - Resulted in conversion of some to HD
 - **Would lower Kt/V achieve clinically adequate clearances?**
 - 2 important Randomized Control Trials:
 - ADEMEX (Adequacy of PD in Mexico)
 - Hong Kong PD trial
 - Both showed a lower achieved Kt/V_{urea} did not lead to higher mortality rates.
ADEMEX 1

- 965 patients randomized to:
 - 4 daily 2L exchanges versus
 - Increase in dose to achieve peritoneal CrCl >60L/wk/1.73m²
- Achieved CrCl 46 v 57 L/wk/1.73m²
 - Kt/V 1.62 v 2.13
- No difference in overall survival
 - 68 v 69%, at least 2 year follow-up
ADEMEX 2

No differences by age, diabetic status, or serum albumin
Hong Kong Trial 1

- 320 incident PD patients
- Target total $\text{Kt/V}_{\text{urea}}$ (PD + RRF)
 - 1.5-1.7, 1.7-2.0, or > 2.0
- Good separation between groups
- Achieved appropriate total $\text{Kt/V}_{\text{urea}}$
 - Peritoneal Kt/V: differences from month 1
 - No difference in renal Kt/V
- Survival no different between groups
Hong Kong Trial 2

- No difference among groups in:
 - OVERALL MORTALITY
 - Overall nutritional status
 - Serum albumin

- Differences in:
 - ESA dose
 - Uremic symptoms
 - higher ESA doses and more symptoms in Kt/V group 1.5-1.7 only
Effect of increasing Kt/V urea above 1.5 on mortality
Floor v Target Dialysis Dose

• Consensus:
 – Kt/V = 1.7 is a reasonable ‘floor’ dialysis dose, even though neither study showed a true minimum re: mortality benefit of dialysis dose

• Recall, many natural phenomena follow a normal distribution - If 1.7 is used as target Kt/V_{urea}, some will fall above and some will fall below.

• An important thought experiment for learners:
 – what is a reasonable target so to achieve an ‘adequate’ Kt/V of 1.7 in almost all patients?
Equations 1
Weekly Kt/V for PD

- Kt/V_{urea} – not necessarily the optimal measurement, but what we use
- $K = \text{Volume cleared/time (Liters/day)}$
- t in days
- $V_{d\text{urea}} \sim \text{TBW (in Liters)}$
- Kt/V in PD over 1 day x 7 = adequacy over 1 week
Equations 2

Calculate K_{urea}

Renal Clearance: $C_x = \frac{[U_x]}{[P_x]} \times \text{urine Volume}$

PD Clearance: $C_x = \frac{[D_x]}{[P_x]} \times \text{dialysate Volume}$

So, $K_{\text{urea}} = \frac{D}{P_{\text{urea}}} \times \text{dialysate V}$
Equations 3
Weekly PD clearance

\[Kt/V = \left[\frac{D}{\text{Purea}} \times \text{Dial Volume} \right] \times 7 \text{days} \]

\[V_d \text{urea} \]

What is Mr H’s dialysate clearance?
He weighs 70kg. He brings in his solutions.
Samples show: dialysate urea = 36 mg/dl
Serum urea = 42 mg/dl
24 h dialysate Volume (see slide 3) = 11.6 L*
\[V_d \text{ urea (TBW)} = 70 \text{kg} \times 0.6 = 42 \text{ L} \]

The unitless answer is 1.67 for the week
Equations 4

Calculate renal Kt/V_{urea}

$$Kt/V = \left[\frac{U}{P_{urea}} \times \text{Urine Volume} \right] \times 7 \text{ days} \div V_{durea}$$

What is Mr H’s residual renal clearance?

Urine urea = 437 mg/dl
Serum urea (as before) = 42 mg/dl
Urine Volume = 365 ml = 0.365 L
V_{durea} (as before) = 42 Liters

Renal $Kt/V = 0.62$ for the week
What is clinical adequacy?

Now let’s discuss Mr H’s adequacy

Total Kt/V =

Peritoneal + renal Kt/V = 1.67 + 0.62 = 2.29

Note: He is achieving adequacy

1) by numbers

2) by subjective measures
 he SAYS he feels better

3) by physical well-being
 not previously described, but his volume status, BP, ‘lytes, minerals, & anemia are on target
Adequacy is....

• A state of well-being, not specifically defined by one number
• A minimum total Kt/V_{urea} of 1.7 if you require a number
 – Sum of renal function and dialysate Kt/V_{urea}
 – RCT data exist! (rare in nephrology)
• Determined by both patient & provider
References

Question #1

• A 52-year-old Caucasian gentleman on peritoneal dialysis for 2 years comes for his quarterly adequacy measurements. His CCPD prescription consists of five 2.8 L exchanges, with a final fill of 2 L in the morning, all of which are 2.5% Dianeal (total volume of 16 L per day). He says that he makes 3 cups of urine a day. It is time to perform his peritoneal dialysis adequacy measurements.
Question #1: Continued

• At minimum, you should request:
 – A. Aliquots of PD fluid at zero, 2, and 4 hours for urea, creatinine, and glucose measurements after an initial exchange of 2.0 L containing 2.5% Dianeal.
 – B. Aliquots of PD fluid collected at zero and 24 hours for urea and creatinine from the cycler’s final morning drain and urine collected over the past day.
 – C. Creatinine clearances from PD effluent and urine collected over the past 2 days
 – D. Creatinine clearances from PD effluent and urine collected over the past day
 – E. Urea clearances from PD effluent and urine collected over the past day
Question #1: Correct answer is E

• Main Point: Describe how adequacy measurements are accomplished for peritoneal dialysis

• Although all clearances are not created equal, we do add renal and dialysate clearances to get total clearance. (Renal Kt/V urea + dialysate Kt/V urea = total Kt/V urea for each patient.) This sum gives the total dialysis ‘adequacy’, as measured by urea clearance. Although this is not necessarily an ideal measurement of adequacy, it is the current measurement from which regulatory bodies assess peritoneal dialysis clearances. Current KDOQI guidelines state that total Kt/V should not go below 1.7.
Question #1: Discussion Continued

• How is this done? Patients collect a 24-hour urine sample for urea clearance, from which the renal Kt/V urea can be calculated. The patients also record 24 hour volume removal (ultrafiltration) from their peritoneal dialysis effluent, and bring aliquots from the drain bags for that period. (It would be too cumbersome to bring more than 16 liters to the dialysis unit!) Creatinine clearances have been measured as part of peritoneal dialysis adequacy in the past, and can give information about clearance, but are not the current standards by which regulatory bodies and most dialysis units monitor adequacy. Thus, answers c and d, which do not have a urea component, are incorrect. The description of aliquots at zero, 2 and 4 hours describe a peritoneal equilibration test (PET) to describe peritoneal membrane characteristics, thus ‘a’ is not correct. Aliquots collected only from the morning drain will not capture clearances from the daytime fill, so ‘b’ is incorrect.
Question #2

• A 67 yo African American woman has been on peritoneal dialysis for 3 years. She has had declining residual renal function. She used to have a Kt/V urea of > 2.2, but now her Kt/V urea is 1.81. The woman states that she feels great, and no different from how she felt a year ago when her Kt/V urea was 2.12. Her dialysis nurse is insistent that she increase the size and number of dwells, despite the reluctance of the patient.
Question #2: Continued

- The best evidence to back up the patient’s claims would be which statement:
 - A. More than one RCT has shown no worse outcome with Kt/Vurea 1.7-2.0 versus >=2.0.
 - B. More than one observational trial has shown no worse outcome with Kt/Vurea 1.7-2.0 versus >= 2.0.
 - C. More than one RCT has shown African Americans have equivalent outcomes with Kt/Vurea 1.7-2.0 versus > 2.0
 - D. More than one observational trial has shown that Kt/Vurea is not the optimal measurement of PD adequacy.
Main Point – Describe the existing evidence base regarding peritoneal dialysis adequacy measurements and outcomes.

It is helpful to be aware of two trials with reference to this question. The ADEMEX trial randomized patients to a dialysis dose of 4 x 2L exchanges per day or a targeted creatinine clearance of >= 60 L/week/1.73m2. (The average Kt/V urea for each group was 1.80 vs 2.27.) Mortality was not different between groups. A trial by Lo et al, from Hong Kong, targeted a total Kt/V urea of < 1.7, 1.7-2.0, or > 2.0 per week. Mortality was not different between groups, and the groups achieving Kt/V 1.7-2.0 and > 2.0 were remarkably similar in other ways as well. The group < 1.7 had a higher drop out rate and required more erythropoietin. RCTs, such as the ADEMEX trial and a trial by Lo et al from Hong Kong, have shown that outcomes such as mortality as a result of clearance targets in the 1.7-2.0 range are not worse than outcomes for a total Kt/Vurea >2.0. Even if observational trials did exist, ‘a’ would still be a better choice than ‘b’ because data from RCTs are superior to those from observational trials. The ADEMEX trial had primarily Mexican patients, and the trial from Hong Kong was racially homogeneous, too. No RCT has had substantial African American populations. Thus, ‘c’ is not the most correct answer. ‘D’ is incorrect because there have not been trials to show that other measurements of adequacy are more predictive of outcomes than Kt/Vurea.